Global contrast based salient region boundary sampling for action recognition

Zengmin Xu, Ruimin Hu, Jun Chen, Huafeng Chen, Hongyang Li

22nd International Conference on MultiMedia Modeling (MMM) (2016)

EI, CCF C, Oral

DOI: 10.1007/978-3-319-27671-7_16

PDF

Abstract

Although the excellent representation ability of improved Dense Trajectory (iDT) based features for action video had been proved on several action datasets, the performance of action recognition still suffers from large camera motion of videos. In this paper, we improve the iDT method by advancing a novel salient region boundary based dense sampling strategy, which reduces the number of trajectories while preserves the discriminative power. We first implement the iDT sampling based on motion boundary image, then introduce a global contrast based salient object segmentation method in interest points sampling step of action recognition. To overcome the flaws of global color contrast-based salient region sampling, we apply morphological gradient to generate a more robust mask for sampling dense points, as motion boundaries are much clearer. To evaluate the proposed method, we conduct extensive experiments on two benchmarks including HMDB51 and UCF50. The results show that our sampling strategy can improve the performance of action recognition with minor computational cost of mask production. In particular, on the HMDB51 dataset, the improvement over the original iDT result is 3 %. Meanwhile, any other dense features of action recognition can achieve more competitive performance by utilizing our sampling strategy and Fisher vector encoding method simply.